Coastline Zones Identification and 3D Coastal Mapping Using UAV Spatial Data
نویسندگان
چکیده
Spatial data acquisition is a critical process for the identification of the coastline and coastal zones for scientists involved in the study of coastal morphology. The availability of very high-resolution digital surface models (DSMs) and orthophoto maps is of increasing interest to all scientists, especially those monitoring small variations in the earth’s surface, such as coastline morphology. In this article, we present a methodology to acquire and process high resolution data for coastal zones acquired by a vertical take off and landing (VTOL) unmanned aerial vehicle (UAV) attached to a small commercial camera. The proposed methodology integrated computer vision algorithms for 3D representation with image processing techniques for analysis. The computer vision algorithms used the structure from motion (SfM) approach while the image processing techniques used the geographic object-based image analysis (GEOBIA) with fuzzy classification. The SfM pipeline was used to construct the DSMs and orthophotos with a measurement precision in the order of centimeters. Consequently, GEOBIA was used to create objects by grouping pixels that had the same spectral characteristics together and extracting statistical features from them. The objects produced were classified by fuzzy classification using the statistical features as input. The classification output classes included beach composition (sand, rubble, and rocks) and sub-surface classes (seagrass, sand, algae, and rocks). The methodology was applied to two case studies of coastal areas with different compositions: a sandy beach with a large face and a rubble beach with a small face. Both are threatened by beach erosion and have been degraded by the action of sea storms. Results show that the coastline, which is the low limit of the swash zone, was detected successfully by both the 3D representations and the image classifications. Furthermore, several traces representing previous sea states were successfully recognized in the case of the sandy beach, while the erosion and beach crests were detected in the case of the rubble beach. The achieved level of detail of the 3D representations revealed new beach characteristics, including erosion crests, berm zones, and sand dunes. In conclusion, the UAV SfM workflow provides information in a spatial resolution that permits the study of coastal changes with confidence and provides accurate 3D visualizations of the beach zones, even for areas with complex topography. The overall results show that the presented methodology is a robust tool for the classification, 3D visualization, and mapping of coastal morphology.
منابع مشابه
Characterizing Fishing Effort and Spatial Extent of Coastal Fisheries
Biodiverse coastal zones are often areas of intense fishing pressure due to the high relative density of fishing capacity in these nearshore regions. Although overcapacity is one of the central challenges to fisheries sustainability in coastal zones, accurate estimates of fishing pressure in coastal zones are limited, hampering the assessment of the direct and collateral impacts (e.g., habitat ...
متن کاملInvestigation of periodic changes of the Oman Sea coastline using remote sensing data and spatial analysis
Extended abstract 1- Introduction Coastal environments are one of the most sensitive environmental systems under the influence of dominant hydrodynamic processes. Coastal changes and evolution are occurring very fast. Coastal areas are now gradually becoming known as severe natural and man-made disturbances, including sea levels rising, coastal erosion and sedimentation, and over-exploitat...
متن کاملTarget detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملPleuronectiformes species identification along the Iranian coastline of the Persian Gulf
Pleuronectiforme fishes of the Persian Gulf coastlines along Khuzestan, Bushehr and Hormozgan provinces were morphometrically and meristically studied from April 2003 to September 2005, in order to identify species. In this experiment, 1551 fish samples were caught by trawl or collected from fish markets. The sampling was carried out in 27 regions seasonally. Thirty six traits and parameters in...
متن کاملPleuronectiformes species identification along the Iranian coastline of the Persian Gulf
Pleuronectiforme fishes of the Persian Gulf coastlines along Khuzestan, Bushehr and Hormozgan provinces were morphometrically and meristically studied from April 2003 to September 2005, in order to identify species. In this experiment, 1551 fish samples were caught by trawl or collected from fish markets. The sampling was carried out in 27 regions seasonally. Thirty six traits and parameters in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 5 شماره
صفحات -
تاریخ انتشار 2016